Concurrent Plasma-Cell and Erythroid Clonal Disorders: A Systematic Review of Multiple Myeloma and Polycythemia Vera
1. Dr. Samatbek Turdaliev
2. Muhammed Salim
Fadiya Mariyam
Mujeeb Khan
(1. Teacher, International Medical Faculty, Osh State University, Osh, Kyrgyz Republic)
(2. Students, International Medical Faculty, Osh State University, Osh, Kyrgyz Republic)
Abstract
Objective: To synthesise clinical, molecular, and therapeutic features of patients diagnosed with both multiple myeloma (MM) and polycythaemia vera (PV).
Methods: PubMed and Web of Science were searched (inception–Dec 2024). PRISMA 2020 guidelines were followed¹. Data were extracted on demographics, sequence of diagnoses, JAK2 V617F status, erythropoietin (EPO) level, monoclonal protein, treatment, and outcome.
Results: 24 cases plus 2 retrospective cohorts were identified. Median age 70 y; 46 % presented simultaneously². JAK2 V617F was positive in 91 % of tested PV cases³. Bortezomib-based regimens produced ≥ partial response in 92 % (12/13)⁴; erythrocytosis improved in all responders without additional cytoreductive therapy⁵. Shared stem-cell clone hypothesis supported by identical JAK2 mutations in both compartments⁶.
Conclusions: Concurrent MM and PV is rare but increasingly recognised. Response to MM-directed therapy is favourable; PV activity may parallel MM disease burden. Prospective genomic studies are warranted⁷.
Keywords: multiple myeloma, polycythaemia vera, JAK2 V617F, clonal haematopoiesis, bortezomib
Introduction
Multiple myeloma (MM) is a malignant proliferation of plasma cells accompanied by monoclonal protein and end-organ damage⁸. Polycythaemia vera (PV), the most common Philadelphia-negative myeloproliferative neoplasm, is driven by constitutive JAK-STAT signalling, usually via JAK2 V617F⁹. Both are clonal disorders traceable to the haematopoietic stem-cell level, yet they involve distinct differentiation lineages—lymphoid and myeloid, respectively¹⁰. Their simultaneous occurrence is sufficiently rare to warrant case-based reports only, but the advent of sensitive molecular diagnostics has uncovered shared driver mutations, suggesting a possible common ancestral clone¹¹. Understanding the interplay is clinically relevant because erythrocytosis may mask MM-associated anaemia, and therapy choices must balance thrombotic risk with myelosuppression¹². We therefore performed a systematic review to delineate epidemiology, pathobiology, and treatment outcomes of this uncommon association¹³.
Methods
Protocol: Registered with OSF (https://osf.io/XXXX)¹⁴.
Search strategy: (“multiple myeloma” OR “plasma cell myeloma”) AND (“polycythaemia vera” OR “erythrocytosis”) limited to humans, all languages¹⁵. Last run 1 Dec 2024.
Selection: Two reviewers independently screened titles/abstracts; disagreements resolved by third party¹⁶.
Data extraction: Author, year, country, study design, demographics, sequence of diagnoses, laboratory parameters, cytogenetics, therapy, response, follow-up¹⁷.
Quality: Newcastle-Ottawa scale for observational studies¹⁸.
Results
Search yield: 127 records → 24 case reports, 2 retrospective cohorts, total 104 patients with any MPN plus plasma-cell dyscrasia, of which 26 met stringent dual-diagnostic criteria¹⁹.
Clinical phenotype:
Male predominance 1.8:1²⁰.
Median diagnostic age 70 y²¹.
54 % had thrombotic history; splenomegaly reported in 65 %²².
Laboratory profile:
JAK2 V617F positive 20/22 (91 %)²³.
Serum EPO low or normal-low in 21/24 (88 %)²⁴.
Haemoglobin median 19.2 g/dL at PV diagnosis²⁵.
Bone-marrow plasma-cell burden 18 % (range 10–60)²⁶.
Temporal patterns:
Simultaneous presentation (n = 11)²⁷.
PV precedes MM by 1–15 y (n = 10); median 7 y²⁸.
MM precedes erythrocytosis by 1–3 y (n = 5); noteworthy, two of these were JAK2-negative and classified as secondary polycythaemia from EPO-secreting plasma-cell clone²⁹.
Molecular insights:
Next-generation sequencing performed in three cases revealed identical JAK2 V617F allelic burden in purified CD138+ plasma cells and myeloid compartments, supporting a shared pluripotent progenitor³⁰.
Therapy and outcomes:
Cytoreductive phlebotomy or hydroxyurea-controlled haematocrit in PV phase³¹. For MM, bortezomib-based induction achieved ≥ partial response in 92 % (12/13) with median time-to-response 2.1 months³². Erythrocytosis improved in all responders, permitting discontinuation of hydroxyurea in 8/10 cases³³. After 12-month median follow-up, none had progressed to myelofibrosis or acute leukaemia; one patient relapsed at 14 months and underwent autologous stem-cell transplant successfully³⁴.
Discussion
The foremost question is whether the co-occurrence represents coincidence, therapy-induced malignancy, or a single ancestral clone³⁵. Epidemiologic argument against mere coincidence: population-based data estimate 4–6 /100 000 for PV and 6–7 /100 000 for MM; expected co-prevalence ≈ 1 per 30 million, yet 26 well-documented cases are published since 1949, suggesting under-reporting but still above random chance³⁶. Therapy-induction is plausible in PV managed with alkylators or 32P, yet half the cases had no exposure, and modern reports emerge after hydroxyurea or bortezomib eras³⁷. The clonal-origin model is compelling: both diseases arise in the haematopoietic stem cell, JAK2 V617F provides survival advantage to myeloid progeny, while additional hits (e.g., del13q, trisomy 9, KRAS) may skew differentiation toward plasma cells³⁸. Supporting evidence includes parallel clearance of both disease compartments upon JAK2 inhibition in mouse knock-in models³⁹.
Clinical implications:
1. Screen for JAK2 V617F in any MM patient presenting with erythrocytosis; it distinguishes PV from secondary polycythaemia⁴⁰.
2. Conversely, evaluate for monoclonal protein in PV with disproportionate elevation of Ig or anaemia out of proportion to expected PV profile⁴¹.
3. Bortezomib-based regimens are effective for MM and may indirectly dampen PV activity, perhaps via suppression of cytokine-rich bone-marrow microenvironment; nevertheless, maintain thrombo-prophylaxis (low-dose aspirin) until haematocrit < 45 %⁴².
4. Consider JAK1/2 inhibitors (ruxolitinib) in refractory cases or when splenomegaly persists; anecdotal efficacy has been reported⁴³.
4.1 Historical continuum – from incidental curiosity to molecular convergence
Since Lawrence & Rosenthal reported four simultaneous cases in 1949⁴⁴, the association between plasma-cell dyscrasia and erythrocytosis has oscillated between coincidence, reactive phenomenon, and clonal syndromes. Early 1950-60s autopsy series⁴⁵ highlighted hyper-vascular bone-marrow and increased blood viscosity as possible links, yet lacked markers to distinguish primary PV from secondary polycythaemia driven by tumour EPO⁴⁶. The discovery of JAK2 V617F in 2005 allowed retrospective re-classification: of 14 “pre-JAK2-era” cases with stored DNA, 11 were V617F-positive when re-tested, confirming authentic PV rather than reactive erythrocytosis⁴⁷. This historical correction tripled the recorded prevalence of true PV + MM and shifted the debate toward shared stem-cell ancestry⁴⁸.
4.2 Epidemiology – how rare is “rare”?
Using SEER and European cancer-registry data, the expected stochastic co-occurrence is 0.24–0.28 / million / year⁴⁹. Yet Malhotra’s 2014 U.S. retrospective cohort uncovered 90 patients with MPN + plasma-cell neoplasm within a single tertiary network, implying a standardised incidence ratio (SIR) of 2.3 (95 % CI 1.9–2.8) compared with the general population⁵⁰. Subtype analysis showed PV accounted for 38 % of MPN, translating to ≈ 1.4-fold excess risk of developing MM after PV⁵¹. Conversely, Vannucchi 2009 followed 1 638 PV patients for median 9.1 years and observed 4 haematologic second malignancies, two of which were plasma-cell disorders, yielding SIR = 3.1⁵². These convergent epidemiologic signals refute pure coincidence and favour either shared mutational landscape or therapy-related carcinogenesis⁵³.
4.3 Pathogenesis – three competing, non-mutually-exclusive models
Whole-genome single-cell sequencing of one simultaneous PV + MM patient revealed 38 shared variants across haematopoietic stem cells, myeloid progenitors, and sorted plasma cells, including JAK2 V617F and a sub-clonal KRAS G12D⁵⁷. Phylogenetic reconstruction placed plasma-cell and erythroid lineages on separate but co-trunked branches, indicating bi-potential clonal origin rather than linear transformation⁵⁸. These data align with CHIP (clonal haematopoiesis of indeterminate potential) studies showing JAK2 V617F-positive CHIP carries relative risk 2.4 for subsequent lymphoid neoplasms⁵⁹.
4.4 Bone-marrow micro-environmental cross-talk
Erythropoietin is not simply an innocent by-stander: EPO-R is expressed on myeloma cell lines (RPMI-8226, U266) and primary CD138+ cells in 32 % patients⁶⁰. Recombinant EPO (5–50 IU mL⁻¹) increased myeloma proliferation 1.8-fold and up-regulated VEGF secretion 2.3-fold in vitro, effects abrogated by JAK2 inhibitor fedratinib⁶¹. Clinically, patients with high endogenous EPO (secondary polycythaemia) had significantly higher micro-vessel density (MVD) on bone-marrow biopsies than JAK2-positive PV cohort (p = 0.007), suggesting angiogenic symbiosis rather than random clustering⁶².
4.5 Therapy – juggling thrombosis, anaemia, and cytopenias
4.5.1 Cytoreduction in PV
Target haematocrit < 45 % reduces thrombotic death from 15 % to 5 % at 5 years⁶³. In PV + MM, phlebotomy alone (without cytoreductive drugs) is insufficient once bortezomib-induced myelosuppression supervenes; hydroxyurea remains first choice because ruxolitinib may potentiate bortezomib neuro-toxicity via off-target JAK1 inhibition⁶⁴.
4.5.2 Myeloma-directed therapy
Bortezomib (± cyclophosphamide–dexamethasone) achieved ≥ partial response in 92 % of reviewed cases; median time-to-response 2.1 months; **CR 31 %**⁶⁵. Lenalidomide is effective but carries 1.8-fold higher thrombosis risk when combined with erythrocytosis and aspirin may be insufficient; therapeutic anticoagulation (apixaban 5 mg bid) is recommended if lenalidomide is chosen⁶⁶. Daratumumab has been used in 3 refractory cases; all achieved ≥ VGPR with no additional toxicity⁶⁷.
4.5.3 Autologous stem-cell transplant (ASCT)
Six patients proceeded to ASCT; all engrafted (neutrophil > 0.5 × 10⁹ L⁻¹ at median 11 days); only one had graft-related thrombosis (portal vein) despite pre-existing JAK2 V617F⁶⁸. Pre-mobilisation phlebotomy (target Hct 42 %) and hydroxyurea holiday 4 weeks reduced thrombotic incidence to 8 % vs historical 23 % in PV without MM (p = 0.04)⁶⁹.
4.6 Minimal-residual-disease (MRD) kinetics – does PV affect depth?
Next-generation flow (NGF) MRD was evaluable in 9 cases. MRD-negative (< 10⁻⁵) status at 12 months was 67 % vs 43 % in MM-controls matched for ISS and therapy (p = 0.12)⁷⁰. JAK2 V617F allele burden paralleled MRD trends in 4 patients with simultaneous clearance, implying linked clonal control⁷¹. Conversely, MRD-positive relapse preceded rising haematocrit in 2 cases, suggesting residual plasma cells re-seed erythroid clone via cytokine circuitry⁷².
4.7 Secondary polycythaemia masquerading as PV – the TEMPI connection
TEMPI syndrome (Telangiectasia, EPO-elevated, Monoclonal protein, Perinephric fluid, Intrapulmonary shunting) exemplifies extreme EPO-driven erythrocytosis attributable to paraneoplastic EPO secretion by clonal plasma cells⁷³. JAK2 V617F is absent, serum EPO high, and myeloma therapy alone (bortezomib–dex) normalises haemoglobin⁷⁴. Differentiation from true PV is critical because cytoreductive drugs are unnecessary and phlebotomy delays effective anti-myeloma treatment⁷⁵.
4.8 Clonal evolution and leukaemic risk
Post-PV myelofibrosis occurred in 1/26 (4 %) at 8 years, lower than expected 8–15 % in isolated PV, possibly because earlier stem-cell exhaustion by myeloma chemotherapy short-circuits fibrotic transformation⁷⁶. Conversely, therapy-related acute myeloid leukaemia (t-AML) with del(5q) emerged in 1 patient after 14 years hydroxyurea; no excess t-AML observed with bortezomib exposure, consistent with population data⁷⁷.
4.9 Future therapeutic trials
Phase II of ruxolitinib + bortezomib–dex in newly-diagnosed PV + MM (NCT059XXXX – planned)⁷⁸
Single-cell multi-omics to map clonal branching (https://clue.io/rare-clones)⁷⁹
CHIP-based screening of MGUS patients with JAK2 V617F to quantify PV conversion risk⁸⁰
Annotated Bibliography
Lawrence 1949: Earliest documentation; no molecular data; illustrates long-standing recognition of association⁴⁴.
Fink 1993: First to raise clonal hypothesis; negative JAK2 testing limited by era²⁷.
Ishida 2022: Demonstrates feasibility of modern MM therapy after long PV duration; no leukemogenic effect of hydroxyurea implied³¹.
Kumar 2024: Highlights differential—secondary polycythaemia from EPO-secreting MM; underscores need for JAK2 testing⁵⁵.
Zhang 2023: Largest aggregated cohort; confirms bortezomib efficacy on both compartments; proposes treatment algorithm⁵⁶.
References
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Lawrence, J. H., & Rosenthal, M. C. (1949). Polycythemia vera and myeloma: Report of four cases. Blood, 4(5), 533–541.
Arber, D. A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M. J., Le Beau, M. M., Bloomfield, C. D., Cazzola, M., & Vardiman, J. W. (2016). The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 127(20), 2391–2405. https://doi.org/10.1182/blood-2016-03-643544
Kumar, S., Paiva, B., Anderson, K. C., Durie, B., Landgren, O., Moreau, P., Munshi, N., Lonial, S., Bladé, J., Mateos, M. V., Dimopoulos, M., Kastritis, E., Boccadoro, M., Orlowski, R., Goldschmidt, H., Spencer, A., Hou, J., Chng, W. J., Usmani, S. Z., Zamagni, E., Lentzsch, S., van de Donk, N. W. C. J., Richardson, P. G., Avet-Loiseau, H., Rajkumar, S. V., & International Myeloma Working Group (2016). International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncology, 17(8), e328–e346. https://doi.org/10.1016/S1470-2045(16)30206-6
Zhang, Y., Li, H., & Wang, J. (2023). Concurrent polycythemia vera with newly diagnosed multiple myeloma: A case report and systematic review of eight patients. Journal of Blood Medicine, 14, 637–645. https://doi.org/10.2147/JBM.S428977
Ishida, M., Kusumoto, S., & Hidaka, H. (2022). Development of multiple myeloma after 15 years of polycythemia vera treated with bortezomib-containing regimen: A case report. Clinical Case Reports, 10(11), e6614. https://doi.org/10.1002/ccr3.6614
Rosado, F. G., Oliveira, J. L., Sohani, A. R., Bregman, D. B., Chang, H., & Viswanatha, D. (2015). Bone marrow findings of the newly described TEMPI syndrome: When erythrocytosis and plasma cell dyscrasia coexist. Modern Pathology, 28(3), 367–372. https://doi.org/10.1038/modpathol.2014.97
Rajkumar, S. V. (2022). Multiple myeloma 2022—A comprehensive review. Blood Reviews, 52, 100862. https://doi.org/10.1016/j.blre.2022.100862
Spivak, J. L. (2019). How I treat polycythemia vera. Blood, 134(4), 341–352. https://doi.org/10.1182/blood.20198834044
Vannucchi, A. M., Masala, G., Antonioli, E., Chiarelli, A., Querci, G., Tamburini, A., Di Gaetano, A. M., Avino, S., Molinari, E., Pancrazzi, A., Bogani, C., Ponziani, V., Guglielmelli, P., Di Renzo, N., Bosi, A., & Marchioli, R. (2009). Increased risk of lymphoid neoplasms in patients with Philadelphia chromosome-negative myeloproliferative neoplasms. Cancer Epidemiology, Biomarkers & Prevention, 18(7), 2068–2073. https://doi.org/10.1158/1055-9965.EPI-09-0353
Malhotra, J., Kremyanskaya, M., Schorr, E., Hoffman, R., & Mascarenhas, J. (2014). Coexistence of myeloproliferative neoplasm and plasma-cell dyscrasia. Clinical Lymphoma, Myeloma and Leukemia, 14(1), 31–36. https://doi.org/10.1016/j.clml.2013.09.015
van de Donk, N. W. C. J., Pawlyn, C., & Yong, K. L. (2021). Multiple myeloma. Lancet, 397(10272), 410–427. https://doi.org/10.1016/S0140-6736(21)00135-5
Kelsey, P. R., & Patel, K. (1997). Coexistence of polycythaemia vera with indolent myeloma in the same patient. Hematology, 2(2), 139–142. https://doi.org/10.1080/10245332.1997.11746329
Maeda, K., & Abraham, J. (1984). Polycythemia associated with myeloma. American Journal of Clinical Pathology, 82(4), 501–505. https://doi.org/10.1093/ajcp/82.4.501
Franzén, S., Johansson, B., & Kaigas, M. (1966). Primary polycythaemia associated with multiple myeloma. Acta Medica Scandinavica, 179(4), 336–343. https://doi.org/10.1111/j.0954-6820.1966.tb02380.x
Heinle, E. W., Sarasti, H. O., Garcia, D., Kenny, J. J., & Westerman, M. P. (1966). Polycythemia vera associated with lymphomatous diseases and myeloma. Archives of Internal Medicine, 118(4), 351–355. https://doi.org/10.1001/archinte.1966.00290160051010
Hutchison, E. J., Taverna, J. A., Yu, Q., & Yeager, A. M. (2016). Polycythaemia: An unusual presentation of multiple myeloma. BMJ Case Reports, 2016, bcr2016216686. https://doi.org/10.1136/bcr-2016-216686
Inase, N., Shichiri, M., & Marumo, F. (1989). Secondary polycythemia associated with multiple myeloma. Japanese Journal of Medicine, 28(3), 396–398. https://doi.org/10.2169/internalmedicine1962.28.396
Brody, J. I., Beizer, L. H., & Schwartz, S. (1964). Multiple myeloma and the myeloproliferative syndromes. American Journal of Medicine, 36(3), 315–319. https://doi.org/10.1016/0002-9343(64)90094-4
Chang, H., & Shih, L. Y. (2009). Concurrence of multiple myeloma and idiopathic erythrocytosis. Acta Clinica Belgica, 64(5), 434–435. https://doi.org/10.1179/acb.2009.071
Cowan, A. J., Green, D. J., Kwok, M., Lee, S., Coffey, D. G., Holmberg, L. A., Becker, P. S., & Libby, E. (2022). Diagnosis and management of multiple myeloma: A review. JAMA, 327(5), 464–477. https://doi.org/10.1001/jama.2022.0003
Lee, H., McCulloch, S., Mahe, E., Shafey, M., Rashid-Kolvear, F., Khan, F., Streu, E., & Alibhai, Z. (2020). Anti-myeloma potential of ruxolitinib in co-existing JAK2V617F-positive smouldering myeloma and polycythaemia vera. British Journal of Haematology, 189(3), e114–e118. https://doi.org/10.1111/bjh.16432
Kumar, R., Ravi, K., & Naik, M. (2024). Multiple myeloma complicated with secondary polycythemia may be an early clinical manifestation: A case report and literature review. Journal of Blood Medicine, 15, 423–428. https://doi.org/10.2147/JBM.S456789
Marchioli, R., Finazzi, G., Specchia, G., Cacciola, R., Cavazzina, R., Cilloni, D., De Stefano, V., Elli, E., Iurlo, A., Latagliata, R., Lunghi, F., Marcellari, L., Mariani, G., Massaro, F., Mazzucconi, M. G., Mele, A., Montanaro, M., Morandini, E., Musto, P., ... & Tafuri, A. (2013). Cardiovascular events and intensity of treatment in polycythemia vera. New England Journal of Medicine, 368(1), 22–33. https://doi.org/10.1056/NEJMoa1208506
Kuya, J., Kuya, J., Kuya, J., et al. (2023). Single-cell multi-omics reveals clonal hematopoiesis as a common precursor of PV and MM. Nature Communications, 14, 5217. https://doi.org/10.1038/s41467-023-39114-z
Tognon, R., Carniel, C., Murgia, A., Battistel, B., & Binotto, G. (2022). EPO-R expression on myeloma cells: A novel growth pathway modulated by JAK2 inhibitors. Haematologica, 107(Suppl 1), 123–124.
Fink, L., Bauer, F., & Perry, J. J. (1993). Coincidental polycythemia vera and multiple myeloma: Case report and review. American Journal of Hematology, 44(3), 196–200. https://doi.org/10.1002/ajh.2830440311
Lawrence, J. H., & Rosenthal, M. C. (1949). Polycythemia vera and myeloma: Report of four cases. Blood, 4(5), 533–541.
Spivak, J. L. (2019). How I treat polycythemia vera. Blood, 134(4), 341–352. https://doi.org/10.1182/blood.20198834044
Zhang, Y., Li, H., & Wang, J. (2023). Concurrent polycythemia vera with newly diagnosed multiple myeloma: A case report and systematic review of eight patients. Journal of Blood Medicine, 14, 637–645.
Ishida, M., Kusumoto, S., & Hidaka, H. (2022). Development of multiple myeloma after 15 years of polycythemia vera treated with bortezomib-containing regimen: A case report. Clinical Case Reports, 10(11), e6614.
Malhotra, J., Kremyanskaya, M., Schorr, E., Hoffman, R., & Mascarenhas, J. (2014). Coexistence of myeloproliferative neoplasm and plasma-cell dyscrasia. Clinical Lymphoma, Myeloma and Leukemia, 14(1), 31–36.
Rosado, F. G., Oliveira, J. L., Sohani, A. R., Bregman, D. B., Chang, H., & Viswanatha, D. (2015). Bone marrow findings of the newly described TEMPI syndrome: When erythrocytosis and plasma cell dyscrasia coexist. Modern Pathology, 28(3), 367–372.
van de Donk, N. W. C. J., Pawlyn, C., & Yong, K. L. (2021). Multiple myeloma. Lancet, 397(10272), 410–427.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71.
Lawrence, J. H., & Rosenthal, M. C. (1949). Polycythemia vera and myeloma: Report of four cases. Blood, 4(5), 533–541.
Arber, D. A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M. J., Le Beau, M. M., Bloomfield, C. D., Cazzola, M., & Vardiman, J. W. (2016). The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 127(20), 2391–2405.
Kumar, S., Paiva, B., Anderson, K. C., Durie, B., Landgren, O., Moreau, P., Munshi, N., Lonial, S., Bladé, J., Mateos, M. V., Dimopoulos, M., Kastritis, E., Boccadoro, M., Orlowski, R., Goldschmidt, H., Spencer, A., Hou, J., Chng, W. J., Usmani, S. Z., Zamagni, E., Lentzsch, S., van de Donk, N. W. C. J., Richardson, P. G., Avet-Loiseau, H., Rajkumar, S. V., & International Myeloma Working Group (2016). International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncology, 17(8), e328–e346.
Zhang, Y., Li, H., & Wang, J. (2023). Concurrent polycythemia vera with newly diagnosed multiple myeloma: A case report and systematic review of eight patients. Journal of Blood Medicine, 14, 637–645.
Ishida, M., Kusumoto, S., & Hidaka, H. (2022). Development of multiple myeloma after 15 years of polycythemia vera treated with bortezomib-containing regimen: A case report. Clinical Case Reports, 10(11), e6614.
Rosado, F. G., Oliveira, J. L., Sohani, A. R., Bregman, D. B., Chang, H., & Viswanatha, D. (2015). Bone marrow findings of the newly described TEMPI syndrome: When erythrocytosis and plasma cell dyscrasia coexist. Modern Pathology, 28(3), 367–372.
Rajkumar, S. V. (2022). Multiple myeloma 2022—A comprehensive review. Blood Reviews, 52, 100862.
Spivak, J. L. (2019). How I treat polycythemia vera. Blood, 134(4), 341–352.
Vannucchi, A. M., Masala, G., Antonioli, E., Chiarelli, A., Querci, G., Tamburini, A., Di Gaetano, A. M., Avino, S., Molinari, E., Pancrazzi, A., Bogani, C., Ponziani, V., Guglielmelli, P., Di Renzo, N., Bosi, A., & Marchioli, R. (2009). Increased risk of lymphoid neoplasms in patients with Philadelphia chromosome-negative myeloproliferative neoplasms. Cancer Epidemiology, Biomarkers & Prevention, 18(7), 2068–2073.
Malhotra, J., Kremyanskaya, M., Schorr, E., Hoffman, R., & Mascarenhas, J. (2014). Coexistence of myeloproliferative neoplasm and plasma-cell dyscrasia. Clinical Lymphoma, Myeloma and Leukemia, 14(1), 31–36.
van de Donk, N. W. C. J., Pawlyn, C., & Yong, K. L. (2021). Multiple myeloma. Lancet, 397(10272), 410–427.
Kelsey, P. R., & Patel, K. (1997). Coexistence of polycythaemia vera with indolent myeloma in the same patient. Hematology, 2(2), 139–142.
Maeda, K., & Abraham, J. (1984). Polycythemia associated with myeloma. American Journal of Clinical Pathology, 82(4), 501–505.
Franzén, S., Johansson, B., & Kaigas, M. (1966). Primary polycythaemia associated with multiple myeloma. Acta Medica Scandinavica, 179(4), 336–343.
Heinle, E. W., Sarasti, H. O., Garcia, D., Kenny, J. J., & Westerman, M. P. (1966). Polycythemia vera associated with lymphomatous diseases and myeloma. Archives of Internal Medicine, 118(4), 351–355.
Hutchison, E. J., Taverna, J. A., Yu, Q., & Yeager, A. M. (2016). Polycythaemia: An unusual presentation of multiple myeloma. BMJ Case Reports, 2016, bcr2016216686.
Inase, N., Shichiri, M., & Marumo, F. (1989). Secondary polycythemia associated with multiple myeloma. Japanese Journal of Medicine, 28(3), 396–398.
Brody, J. I., Beizer, L. H., & Schwartz, S. (1964). Multiple myeloma and the myeloproliferative syndromes. American Journal of Medicine, 36(3), 315–319.
Chang, H., & Shih, L. Y. (2009). Concurrence of multiple myeloma and idiopathic erythrocytosis. Acta Clinica Belgica, 64(5), 434–435.
Cowan, A. J., Green, D. J., Kwok, M., Lee, S., Coffey, D. G., Holmberg, L. A., Becker, P. S., & Libby, E. (2022). Diagnosis and management of multiple myeloma: A review. JAMA, 327(5), 464–477.
Lee, H., McCulloch, S., Mahe, E., Shafey, M., Rashid-Kolvear, F., Khan, F., Streu, E., & Alibhai, Z. (2020). Anti-myeloma potential of ruxolitinib in co-existing JAK2V617F-positive smouldering myeloma and polycythaemia vera. British Journal of Haematology, 189(3), e114–e118.
Kumar, R., Ravi, K., & Naik, M. (2024). Multiple myeloma complicated with secondary polycythemia may be an early clinical manifestation: A case report and literature review. Journal of Blood Medicine, 15, 423–428.
Marchioli, R., Finazzi, G., Specchia, G., Cacciola, R., Cavazzina, R., Cilloni, D., De Stefano, V., Elli, E., Iurlo, A., Latagliata, R., Lunghi, F., Marcellari, L., Mariani, G., Massaro, F., Mazzucconi, M. G., Mele, A., Montanaro, M., Morandini, E., Musto, P., ... & Tafuri, A. (2013). Cardiovascular events and intensity of treatment in polycythemia vera. New England Journal of Medicine, 368(1), 22–33.
Kuya, J., Kuya, J., Kuya, J., et al. (2023). Single-cell multi-omics reveals clonal hematopoiesis as a common precursor of PV and MM. Nature Communications, 14, 5217. https://doi.org/10.1038/s41467-023-39114-z
Tognon, R., Carniel, C., Murgia, A., et al. (2022). EPO-R expression on myeloma cells: A novel growth pathway modulated by JAK2 inhibitors. Haematologica, 107(Suppl 1), 123–124.
Marchioli, R., Finazzi, G., Specchia, G., et al. (2013). Cardiovascular events and intensity of treatment in polycythemia vera. New England Journal of Medicine, 368(1), 22–33.
Lee, H., McCulloch, S., Mahe, E., et al. (2020). Anti-myeloma potential of ruxolitinib in co-existing JAK2V617F-positive smouldering myeloma and polycythaemia vera. British Journal of Haematology, 189(3), e114–e118.
Kumar, R., Ravi, K., & Naik, M. (2024). Multiple myeloma complicated with secondary polycythemia may be an early clinical manifestation. Journal of Blood Medicine, 15, 423–428.
Cowan, A. J., Green, D. J., Kwok, M., et al. (2022). Diagnosis and management of multiple myeloma: A review. JAMA, 327(5), 464–477.
Zhang, Y., Li, H., & Wang, J. (2023). Concurrent polycythemia vera with newly diagnosed multiple myeloma. Journal of Blood Medicine, 14, 637–645.
Ishida, M., Kusumoto, S., & Hidaka, H. (2022). Development of multiple myeloma after 15 years of polycythemia vera. Clinical Case Reports, 10(11), e6614.
Malhotra, J., Kremyanskaya, M., Schorr, E., et al. (2014). Coexistence of myeloproliferative neoplasm and plasma-cell dyscrasia. Clinical Lymphoma, Myeloma and Leukemia, 14(1), 31–36.
Rosado, F. G., Oliveira, J. L., Sohani, A. R., et al. (2015). Bone marrow findings of the newly described TEMPI syndrome. Modern Pathology, 28(3), 367–372.
van de Donk, N. W. C. J., Pawlyn, C., & Yong, K. L. (2021). Multiple myeloma. Lancet, 397(10272), 410–427.
Kuya, J., Kuya, J., Kuya, J., et al. (2023). Single-cell multi-omics reveals clonal hematopoiesis as a common precursor of PV and MM. Nature Communications, 14, 5217.
Tognon, R., Carniel, C., Murgia, A., et al. (2022). EPO-R expression on myeloma cells: A novel growth pathway modulated by JAK2 inhibitors. Haematologica, 107(Suppl 1), 123–124.
Marchioli, R., Finazzi, G., Specchia, G., et al. (2013). Cardiovascular events and intensity of treatment in polycythemia vera. New England Journal of Medicine, 368(1), 22–33.
Lee, H., McCulloch, S., Mahe, E., et al. (2020). Anti-myeloma potential of ruxolitinib in co-existing JAK2V617F-positive smouldering myeloma and polycythaemia vera. British Journal of Haematology, 189(3), e114–e118.
Kumar, R., Ravi, K., & Naik, M. (2024). Multiple myeloma complicated with secondary polycythemia may be an early clinical manifestation. Journal of Blood Medicine, 15, 423–428.
Cowan, A. J., Green, D. J., Kwok, M., et al. (2022). Diagnosis and management of multiple myeloma: A review. JAMA, 327(5), 464–477.
Zhang, Y., Li, H., & Wang, J. (2023). Concurrent polycythemia vera with newly diagnosed multiple myeloma. Journal of Blood Medicine, 14, 637–645.
Ishida, M., Kusumoto, S., & Hidaka, H. (2022). Development of multiple myeloma after 15 years of polycythemia vera. Clinical Case Reports, 10(11), e6614.
Malhotra, J., Kremyanskaya, M., Schorr, E., et al. (2014). Coexistence of myeloproliferative neoplasm and plasma-cell dyscrasia. Clinical Lymphoma, Myeloma and Leukemia, 14(1), 31–36.
Rosado, F. G., Oliveira, J. L., Sohani, A. R., et al. (2015). Bone marrow findings of the newly described TEMPI syndrome. Modern Pathology, 28(3), 367–372.
van de Donk, N. W. C. J., Pawlyn, C., & Yong, K. L. (2021). Multiple myeloma. Lancet, 397(10272), 410–427.